Wissen

Bei den Tauben abgeschaut Roboter fliegt mit echten Federn

ACHTUNG Nur zur redaktionellen Verwendung im Zusammenhang mit der aktuellen Berichterstattung.jpg

PigeonBot: Das Ergebnis aus biologischen Untersuchungen und Ingenieurswissen.

(Foto: Lentink Lab/Stanford University/dpa)

Der Traum vom Fliegen ist so alt wie die Menschheit selbst. Forscher untersuchen die Flügel von Tauben und bauen sie mit echten Federn der Tiere nach. Heraus kommt ein Flugroboter, der gut steuerbar ist.

Einen Flugroboter mit echten Taubenfedern haben US-amerikanische Forscher entwickelt. Es gelang ihnen sogar, das Fluggerät namens PigeonBot mithilfe von künstlichen Gelenken zu steuern. Die Forscher kombinierten dabei geschickt biologische Untersuchungen und Ingenieurswissen. Die zwei Studien eines Teams um David Lentink von der Stanford University in Stanford, Kalifornien sind in den Fachmagazinen "Science Robotics" und "Science" erschienen.

ACHTUNG Nur zur redaktionellen Verwendung im Zusammenhang mit der aktuellen Berichterstattung.jpg

Der aus einer Konstruktion mit echten Taubenfedern bestehende Flugroboter im Flug.

(Foto: Lentink Lab/Stanford University/dpa)

Als promovierter Biologe mit einem Ingenieurstudium versuchte Lentink, insbesondere die Steuerung des Gleitflugs durch Tauben auf ein Fluggerät zu übertragen. Das Team um den Biologen untersuchte dazu zunächst Flügel toter Tauben genau und versuchte dann, sie so gut wie möglich nachzubauen. Biologen betrachten die Vogelflügel als eine Art Hand und sprechen daher auch von Handgelenk und Fingern.

Die Wissenschaftler fanden anhand der Flügel toter Tauben und ihrer Modellierung im Computer unter anderem heraus, dass die Winkel von nur zwei Gelenken 97 Prozent der gesamten Flügelform erklären können: das sogenannte Handgelenk und das Gelenk des Fingers, mit dem die äußeren Flügelfedern verbunden sind. Dabei wird nicht jede Feder einzeln von den Tauben gesteuert, vielmehr sind die Federschäfte mechanisch miteinander verbunden. Im PigeonBot übernehmen elastische Bänder zwischen den Federn diese Aufgabe.

Insgesamt 40 Federn

ACHTUNG Nur zur redaktionellen Verwendung im Zusammenhang mit der aktuellen Berichterstattung.jpg

Nahaufnahme des PigeonBot-Flügels aus echten Federn, die durch elastische Bänder mit synthetischen Handgelenken und Fingern verbunden sind.

(Foto: Lentink Lab/Stanford University/dpa)

PigeonBot hat neben einem Rumpf aus Hartschaumbrettern etwas Elektronik an Bord (GPS, Fernsteuerung, Motor mit Propeller, Aktuatoren für die Gelenke). An den Flügeln sind insgesamt 40 Flugfedern von Tauben befestigt. Wenn im Flug Hand und Finger eines Flügels zum Körper hin bewegt werden, dann fliegt PigeonBot eine Kurve in die Richtung dieses Flügels, "wobei das Handgelenk eine grobe Kontrolle und der Finger die Feinsteuerung ermöglicht", schreiben die Forscher.

Echte Taubenfedern hätten viele Vorteile, schreiben die Forscher. Sie seien "unglaublich weich, leicht und robust". Außerdem böten sie stabile elastische Reaktionen auf unterschiedliche aerodynamische Belastungen. Hinzu kommt ein weiteres Phänomen, das Lentink und Kollegen in der "Science"-Studie genauer untersuchten: Wenn benachbarte Flugfedern übereinander gleiten, dann steigt ab einem bestimmten Winkel der Widerstand um das Zehnfache.

Bei der Untersuchung mit verschiedenen mikroskopischen Methoden bemerkten die Forscher: Tausende von Flimmerhärchen auf den unten liegenden Federn verhaken sich in kleinen Ästen aus oben liegenden Federn. Das verhindert beim Spreizen der Flügel das Entstehen von Lücken in der Flügelfläche. Wenn der Flügel zum Körper hin gezogen wird, lösen sich die verhakten Flimmerhärchen mit einem Geräusch wie beim Lösen eines Klettverschlusses. Bei Vögeln wie der Schleiereule, die sehr leise fliegen, fanden die Forscher diesen Mechanismus nicht.

Quelle: ntv.de, jaz/dpa